SULJE VALIKKO

avaa valikko

Hilbert Modular Forms - Mod P and P-adic Aspects
74,00 €
John Wiley & Sons
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2005, 30.01.2005 (lisätietoa)
Kieli: Englanti
We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $Theta_chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $Theta_chi$ to the $p$-adic setting.

Loppuunmyyty
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Hilbert Modular Forms - Mod P and P-adic Aspectszoom
Näytä kaikki tuotetiedot
ISBN:
9780821836095
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Meistä
Yhteystiedot ja aukioloajat
Usein kysytyt
Akateemisen Ystäväklubi
Toimitusehdot
Tietosuojaseloste
Seuraa Akateemista
Instagram
Facebook
Threads
TikTok
YouTube
LinkedIn