|
|

avaa valikko

Latent Variable Regression Analysis with Missing Covariates
98,80 €
LAP Lambert Academic Publishing
Sivumäärä: 148 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2010, 02.06.2010 (lisätietoa(avautuu ponnahdusikkunassa))
Kieli: Englanti
Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen.
Seuraa saatavuutta(avautuu ponnahdusikkunassa).
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Latent Variable Regression Analysis with Missing CovariatesSuurenna kuva
Näytä kaikki tuotetiedot