|
|

avaa valikko

Least Squares Support Vector Machines
165,20 €
World Scientific Publishing Co Pte Ltd
Sivumäärä: 308 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2002, 14.11.2002 (lisätietoa(avautuu ponnahdusikkunassa))
Kieli: Englanti
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma.
Seuraa saatavuutta(avautuu ponnahdusikkunassa).
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Least Squares Support Vector MachinesSuurenna kuva
Näytä kaikki tuotetiedot
ISBN:
9789812381514