This research extends the emerging field of hyperspectral image (HSI) target detectors that assume a global linear mixture model (LMM) of HSI and employ independent component analysis (ICA) to unmix HSI images. Via new techniques to fully automate feature extraction, feature selection, and target pixel identification, an autonomous global anomaly detector, AutoGAD, has been developed for potential employment in an operational environment for real-time processing of HSI targets. For dimensionality reduction (initial feature extraction prior to ICA), a geometric solution that effectively approximates the number of distinct spectral signals is presented.
Tämän tuotteen tilaamme kustantajalta tai tukkurilta varastoomme. Saatavuusarvio on tuotekohtainen. Lähetämme toimitusvahvistuksen heti, kun tuote on toimitettu varastoltamme rahdinkuljettajalle. Arvioimme, että tuote lähetetään meiltä noin 5-8 arkipäivässä