|
|

avaa valikko

Introduction to Hamiltonian fuzzy Graphs and Containers in fuzzy graph
150,00 €
LAP Lambert Academic Publishing
Sivumäärä: 132 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2021, 20.04.2021 (lisätietoa(avautuu ponnahdusikkunassa))
Kieli: Englanti
Bottlenecks always create delay and traffic jams in networks. Allowing more paths and cycles of larger capacities can ease this problem to some extent. A container in a graph is a family of internally disjoint paths between pairs of vertices. Analogously, a container in a fuzzy graph is a collection of internally disjoint strongest paths. Strongest paths always contribute the maximum towards the flow of a network. Hence the study of strongest paths and containers helps in analysing and controlling their performance. The size of a path in a fuzzy graph is the sum of membership values of its edges. A path of maximum size is said to be a heavy path. Some results on heavy paths and heavy cycles are discussed. The concept of a Hamiltonian fuzzy graph is also studied. A sufficient condition for a fuzzy graph to be Hamiltonian is obtained. A generalisation for Dirac's theorem in graph theory is discussed in a fuzzy set up. Also two classic results on graph degrees are generalised to fuzzy graphs. Algorithms for the determination of heavy paths and heavy Hamilton cycles and an application of heavy paths in human trafficking are also proposed towards the end.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen.
Seuraa saatavuutta(avautuu ponnahdusikkunassa).
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Introduction to Hamiltonian fuzzy Graphs and Containers in fuzzy graphSuurenna kuva
Näytä kaikki tuotetiedot
ISBN:
9786203853605