SULJE VALIKKO

lang-FI lang-EN lang-SE

avaa valikko

Linear Model Theory : With Examples and Exercises
101,40 €
Springer
Sivumäärä: 504 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2021, 03.11.2021 (lisätietoa)
Kieli: Englanti

This textbook presents a unified and rigorous approach to best linear unbiased estimation and prediction of parameters and random quantities in linear models, as well as other theory upon which much of the statistical methodology associated with linear models is based. The single most unique feature of the book is that each major concept or result is illustrated with one or more concrete examples or special cases. Commonly used methodologies based on the theory are presented in methodological interludes scattered throughout the book, along with a wealth of exercises that will benefit students and instructors alike. Generalized inverses are used throughout, so that the model matrix and various other matrices are not required to have full rank. Considerably more emphasis is given to estimability, partitioned analyses of variance, constrained least squares, effects of model misspecification, and most especially prediction than in many other textbooks on linear models. This book is intended for master and PhD students with a basic grasp of statistical theory, matrix algebra and applied regression analysis, and for instructors of linear models courses. Solutions to the book’s exercises are available in the companion volume Linear Model Theory - Exercises and Solutions by the same author.




Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote
Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Linear Model Theory : With Examples and Exerciseszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Meistä
Yhteystiedot ja aukioloajat
Usein kysytyt
Akateemisen Ystäväklubi
Toimitusehdot
Tietosuojaseloste
Seuraa Akateemista
Instagram
Facebook
Threads
TikTok
YouTube
LinkedIn